Payday loans
Home Publications Journal Publications

Journal Publications

This section contains all refereed journal publications that have some connection either with the Mace Head Research Station or with members, both present and past, of the Atmospheric Physics Research Cluster at NUI, Galway.

Click on the "Search Document" icon above to find a publication based on the search criteria you create.

 


Documents

Order by : Name | Date | Hits [ Ascendant ]

Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements

Date added: 07/31/2001
Date modified: 06/30/2009
Filesize: 527.45 kB
Lai, A.C.K., Byrne, M.A. and Goddard, A.J.H. Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements. J. Aerosol Sci., 32, 121-137, 2001.

Abstract


Understanding particle deposition onto rough surfaces is important for many engineering and environmental applications. An experimental system was designed for the study of aerosol deposition on regular arrays of uniform elements (in the form of discrete protrusions) in a turbulent ventilation duct flow using monodisperse tracer small particles, in the range 0.7-7.1mum. The Reynolds number for the test conditions was 44,000 in the 150 mm square duct. The roughness elements were arranged at two different orientations with respect to the airflow direction and the aerosol deposition velocity and pressure drop were measured for both orientations. Compared to earlier measurements in the same duct system involving smooth or ribbed surfaces, a significant increase in deposition velocity onto the regular roughness elements is observed. In addition, the associated pressure loss penalty is lower than in the presence of the roughness elements than in the presence of the ribbed surfaces. This may be attributable to the small dimensionless roughness height of the elements, which results only in a moderate distortion of the flow structure near the surfaces.

Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2 Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2

Date added: 08/31/2000
Date modified: 07/23/2009
Filesize: 952.82 kB

Wood, R., D. Johnson, S. Osborne, M. O. Andreae, B. Bandy, T. S. Bates, C. O'Dowd, P. Glantz, K. Noone, P. K. Quinn, J. Rudolph, and K. Suhre, Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, 2000. 52B: p. 401-422.


Abstract


Aircraft measurements are presented of the Lagrangian evolution of a marine boundary layer over a 30-h period during the ACE-2 field campaign. At the start of the  observational period,a 500-m deep polluted marine internal boundary layer (MIBL) was overlain by the remnants of a polluted continental boundary layer extending to around 2 km below a clean, dry free troposphere. The MIBL grew rapidly to a thickness of 900–1000 m in response to increasing sea surface temperatures. No significant aerosol spectral evolution was observed in the boundary layer. Low concentrations of SO2 were observed in the MIBL suggesting that the air mass contained relatively aged aerosol. Aerosol spectra show a broad mode with a modal diameter of around 0.1 mm. The polluted layer between the MIBL and the unpolluted free troposphere was only weakly and intermittently turbulent which prevented significant entrainment of clean air into the polluted layer from aloft. The polluted layer depth was thus controlled mainly by subsidence which as a result becomes shallower, decreasing from over 2000 m to around 1200 m during the observational period. The aerosol characteristics of the polluted layer were similar to those in the MIBL and so although the MIBL entrained considerable amounts of air from above the MIBL the aerosol characteristics underwent no significant change. This has important implications for the rate at which a polluted continental air mass is converted to a clean marine one. The dataset should prove useful in the validation of the modelling of continental pollution outbreaks.

Ultrafine particle size distributions at hyytiälä boreal forest site and at a coastal site in M Ultrafine particle size distributions at hyytiälä boreal forest site and at a coastal site in M

Date added: 08/07/2000
Date modified: 07/23/2009
Filesize: 120.05 kB
J. M. MAKELA, P. AALTO, M.VAKEVA, K. HJ~MERI, I.K.KOPONEN, C.D.O'DOWD, M. KULMALA,ULTRAFINE PARTICLE SIZE DISTRIBUTIONS AT HYYTIP, LA BOREAL FOREST SITE AND AT A COASTAL SITE IN MACE HEAD,  J. Aerosol Sct. Vol. 3 I, Suppl. 1, pp S602- S603,2000

Abstract


Number size distribution measurements in the submicron, and especially in the ultrafine size range, were carried out in the intensive field campaigns in connection with two EU projects BIOFOR (ENV4 - CT97 - 0405) and PARFORCE (ENV4-CT97- 0526). The studies in both projects were concentrated in finding the fundamental physico-chemical processes to cause the ambient particle formation phenomena that are observed at two continuous measurement sites (Makela et al, 1997, O'Dowd et al, 1999). The two sites in question are boreal forest site of Hyyti~il~i (SMEAR II) in '
Southern Finland and coastal site of Mace Head on the West coast of Ireland.

Comparison of measured and calculated aerosol optical properties at mace head Comparison of measured and calculated aerosol optical properties at mace head

Date added: 08/07/2000
Date modified: 07/27/2009
Filesize: 126.53 kB
O'Reilly S.; Kleefeld C.; Jennings S.G.; Aalto P.; Becker E.; O'Dowd C.D., Comparison of measured and calculated aerosol optical properties at mace head, Journal of Aerosol Science, Volume 31, Supplement 1, September 2000 , pp. 274-275(2)

Abstract


There are large uncertainties associated with the estimation of the direct radiative forcing of the earth's climate by tropospheric aerosol particles (IPCC, 1996). The radiative effects of the tropospheric aerosol depend on the chemical, physical and optical properties of the aerosol. Because of their short atmospheric residence times, the distribution of tropospheric aerosols about the globe varies significantly, both spatially and temporally. Therefore, investigation of radiative forcing due to these aerosols requires analysis on a regional scale and the characterisation of the properties of the local aerosol.

Uncertainties associated with the calculation of direct radiative forcing by tropospheric aerosols can be identified and quantified using closure studies (Quinn et al., 1996). In a closure study a measured aerosol property is compared with values calculated from a model using other independently measured properties. Closure is achieved if there is agreement between the measured and calculated values within an accepted level of uncertainty. Such agreement indicates that the model may be a suitable representation of the observed system.

Atmospheric aerosol measurements at Mace Head, Ireland Atmospheric aerosol measurements at Mace Head, Ireland

Date added: 08/07/2000
Date modified: 07/27/2009
Filesize: 247.74 kB
Jennings S.G., Atmospheric aerosol measurements at Mace Head, Ireland,Journal of Aerosol Science, Volume 31, Supplement 1, September 2000 , pp. 580-583(4)

Abstract


The atmospheric aerosol plays a fundamental role in the earth's atmosphere, involving solid particulate material. Interest in atmospheric aerosol research has increased dramatically in recent years, as evidenced by a rapidly increasing publication rate in the discipline and through an accelerating presence in both national and international conference media. In earlier decades, interest in atmospheric aerosols was mainly because of their effects on visibility. More recently the accelerated interest in aerosols is largely due to their role in climate effects and in atmospheric chemistry processes. This has also been recognised internationally through activities, such as for example the International Global Atmospheric Chemistry (IGAC) Focus on aerosols and the World Meteorological Organisation (WMO), Global Atmospheric Watch (GAW) Aerosol, (WMO, 1997).

One of the largest uncertainties associated with climate forcing relates to the atmospheric aerosol, as noted by the Inter-Governmental Panel on Climate Change (IPCC); Houghton et al., 1995. The atmospheric aerosol shows large variability both in time and in space (Dreiling and Jaenicke, 1994) and is one of the major outstanding uncertainties in atmospheric aerosol research. Recently, there have been increasing studies of the natural aerosol since it is recognised that until natural background aerosol sources are better quantified, the influence of the more pollutant anthropogenic aerosol on climate for example, cannot be fully understood. The Mace Head Atmospheric Research Station has provided a good platform for the performance of a range of atmospheric aerosol studies some of which are summarised in the following pages.

Analysis of PM2.5 particulate mass concentrations during 1999 at Mace Head Analysis of PM2.5 particulate mass concentrations during 1999 at Mace Head

Date added: 08/07/2000
Date modified: 07/27/2009
Filesize: 148.23 kB

Kleefeld S.; Jennings S.G., Analysis of PM2.5 particulate mass concentrations during 1999 at Mace Head, Journal of Aerosol Science, Volume 31, Supplement 1, September 2000 , pp. 731-732(2)


Abstract


In recent years, the quality of air we breathe has become a significant factor in the environment, with ncreasing interest in the properties of both indoor and outdoor air. Ambient air particles, in addition to gaseous species, are important components in the assessment of air quality, since there is increasing evidence for an association between adverse health effects and the levels of particulate air pollution. Especially the finer particle fraction PMz.5 (particulate mass concemrations with a 50% cut-off diameter of 2.5 pro) is able to penetrate deep into the respiratory system of humans and is best correlated with acute mortality and morbidity findings in urban areas (Oberd6rster et al., 1995). Few measurements of PM2.5 mass concentrations exist for urban areas (e.g. Chan et al., 1999, Chow et al., 1996), but no information is available so far for clean marine air concentrations in the North Atlantic region. Information on background concentrations of PM2.~ mass concentrations as well as on their sources is essential in the interpretation of urban particulate air pollution. Within this study PMz.~ mass concentrations are presented for a clean air site at the Atmospheric Research Station at Mace Head, Cama, (53019 ' N, 9054 ' W) on the west coast of Ireland for the year 1999, and a source identification is performed.

Aerosol generation by waves breaking on small islands and rocks near the mace head research sta Aerosol generation by waves breaking on small islands and rocks near the mace head research sta

Date added: 08/07/2000
Date modified: 07/27/2009
Filesize: 150.69 kB

Kunz, GJ, CD O'Dowd, G de Leeuw, Aerosol generation by waves breaking on small islands and rocks near the Mace Head research station. European Aerosol Conference, 2000, J. Aerosol. Sci., Suppl 1., 656-657, 2000. [36] Kleefeld, C., S O'Rielly, SG Jennings, E Becker, C O'Dowd, G Kunz and G de Leeuw, Aerosol scattering: relation to primary and secondary aerosol production in the coastal atmosphere during the PARFORCE campaign, European Aerosol Conference, 2000, J. Aerosol. Sci., Suppl 1., 658-659, 2000.


Abstract


Two coastal field experiments (September 1998 and in June 1999) were conducted at Mace Head, Ireland, under the EU-funded PARFORCE (New P__._~icle Formation and Fate in the Coastal Environment) programme which was designed to elucidate the processes which control and promote homogeneous heteromolecular nucleation in the coastal boundary layer. During conditions of westerly winds and after sufficiently long fetch, the Mace Head station is regularly exposed to pure maritime and clean arctic atmospheres. Under these conditions the generation and growth of new particles due to photochemical conversion of biological emissions is seen to occur on almost a daily basis (e.g., O'Dowd et al., 1998 and O'Dowd et al., 1999). During the PARFORCE experiments the TNO Physics and Electronics Laboratory (TNO-FEL) undertook to measure boundary layer dynamics, as determined from the aerosol structures measured with a lidar (light detection and ranging) system. The results revealed the generation of large amounts of sea spray Aerosol by waves breaking on the islands and roCks near the Mace Head station. The location, size and dynamics of these locally generated aerosol plumes were determined from series of consecutive horizontal and vertical scans. The horizontal extent of these aerosol plumes is highly coherent over distances of several kilometres and the vertical extent is generally between a few tens of meters to a few hundreds of meters. In some occasions the aerosol was observed to be taken aloft to the top of the mixed layer at an altitude of about one kilometre.

A comparison of PM10 levels at mace head and at Trinity College Dublin A comparison of PM10 levels at mace head and at Trinity College Dublin

Date added: 08/07/2000
Date modified: 07/27/2009
Filesize: 102.39 kB

Finnan J.; McGovern F.M.; O'Leary B.; O'Donnell C.,A comparison of PM10 levels at mace head and at Trinity College Dublin,Journal of Aerosol Science, Volume 31, Supplement 1, September 2000 , pp. 887-888(2)


Abstract


In recent years the role of particulate matter in environmental and health areas has come under increased attention from regulatory and monitoring agencies. This has lead to the introduction of an EC directive on monitoring of PM10 (particulate matter size less than 10 p,m) levels for EU countries. However, the use of PM 10 as a measurement standard has been the subject of considerable debate with lower cut off points, e.g. 2.5 p,m (PM2.5) being considered by many to be of more directly relevant to health issues. Here we present an analysis of PM 10 measurements carried out at two very different sites, i.e. the background site at Mace Head and the central Dublin site of Trinity College Dublin (TCD). Concurrent size distribution data are used to examine the results.

Evaluation of a Lagrangian box model using field measurements from EASE (Eastern Atlantic Summe Evaluation of a Lagrangian box model using field measurements from EASE (Eastern Atlantic Summe

Date added: 08/07/2000
Date modified: 07/24/2009
Filesize: 696.19 kB

Evans, M.J., D.E. Shallcross, K.S. Law, J.O.F. Wild, P.G. Simmonds, T.G. Spain, P. Berrisford, J. Methven, A.C. Lewis, J.B. McQuaid, M.J. Pilling, B.J. Bandy, S.A. Penkett, and J.A. Pyle, Evaluation of a Lagrangian box model using field measurements from EASE 1996, Atmos. Environ., 34, 3843-3863, 2000, (Ser. No. ACP048).


Abstract


The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT), a Lagrangian chemistry model, has been evaluated using atmospheric chemical measurements collected during the East Atlantic Summer Experiment 1996 (EASE '96). This field campaign was part of the UK Natural Environment Research Council's (NERC) Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) programme, conducted at Mace Head, Republic of Ireland, during July and August 1996. The model includes a description of gas-phase tropospheric chemistry, and simple parameterisations for surface deposition, mixing from the free troposphere and emissions. The model generally compares well with the measurements and is used to study the production and loss of O3 under a variety of conditions. The mean difference between the hourly O3 concentrations calculated by the model and those measured is 0.6 ppbv with a standard deviation of 8.7 ppbv. Three specific air-flow regimes were identified during the campaign - westerly, anticyclonic (easterly) and south westerly. The westerly flow is typical of background conditions for Mace Head. However, on some occasions there was evidence of long-range transport of pollutants from North America. In periods of anticyclonic flow, air parcels had collected emissions of NOx and VOCs immediately before arriving at Mace Head, leading to O3 production. The level of calculated O3 depends critically on the precise details of the trajectory, and hence on the emissions into the air parcel. In several periods of south westerly flow, low concentrations of O3 were measured which were consistent with deposition and photochemical destruction inside the tropical marine boundary layer.

 

The modeling of tropospheric methane How well can point measurements be reproduced by a global The modeling of tropospheric methane How well can point measurements be reproduced by a global

Date added: 08/06/2000
Date modified: 07/27/2009
Filesize: 1.69 MB

Houweling, S., F. Dentener, J. Lelieveld, B. Walter, and E. Dlugokencky, 2000: The modeling of tropospheric methane: How well can point measurements be reproduced by a global model? J. Geophys. Res., 105, 8981-9002, doi:10.1029/1999JD901149.


Abstract

 

Global model simulations of tropospheric methane are presented, using state of the art representations of its terrestrial sources. Parameters critical for its tropospheric sink and transport have been evaluated using CH3CCl3 and SF6. We assess how well available methane measurements can be reproduced by the model, and how model and measurements can most efficiently be compared. Using European Centre for Medium-Range Weather Forecasts reanalyzed meteorological fields, direct comparisons between model results and flask or in situ measurements are presented, as opposed to comparing multiannual averaged seasonal cycles and trends as was done in previous studies. When comparing monthly means derived from weekly flask sampling and the model, the agreement at stations as Bermuda East and Mace Head is improved if, instead of sampling the model at each model time step, samples are taken at the same times as the measurements were taken. A method is presented to estimate the potential influence of subgrid variability using a marked tracer that is emitted in the vicinity of observational stations only. From the contribution of this tracer to the computed methane concentration at a particular station, the potential contribution of subgrid sources can be estimated. Radon 222 is used to select baseline conditions in the model to improve the comparability of model and measurements when a clean air sector is selected for sampling. Comparisons of model results and measurements, screened for local influences and artifacts of wind sector selection, indicate that the model has in particular difficulty reproducing seasonal cycles at higher latitude stations of the Northern Hemisphere. Sensitivity simulations show that the simulated annual variation at these stations is sensitive to the parameterization of wetland emissions. Also at the South China Sea, model simulations point to errors in the representation of methane sources. Marked tracer simulations indicate that this is most likely related to emissions from natural wetlands and rice paddies, in line with recent inverse modeling and up-scaling estimates.

 

Novel Biogenic Iodine-Containing Trihalomethanes and Other Short-Lived Halocarbons in the Coast Novel Biogenic Iodine-Containing Trihalomethanes and Other Short-Lived Halocarbons in the Coast

Date added: 08/06/2000
Date modified: 07/23/2009
Filesize: 1.05 MB

Carpenter, L. J., G. Malin, P. S. Liss, and F. C. Küpper (2000), Novel Biogenic Iodine-Containing Trihalomethanes and Other Short-Lived Halocarbons in the Coastal East Atlantic, Global Biogeochem. Cycles, 14(4), 1191–1204.


Abstract


Reactive halogen photochemistry and its impact on tropospheric oxidant levels have recently attracted intense research interest following the observation of the iodine oxide radical at midlatitudes. During September 1998, short-lived organoiodines including CH3I, C2H5I, CH2ICl, CH2IBr, CH2I2, and the hitherto undetected CHIBr2, as well as the organobromines CHBr3, CH2Br2, CHBr2Cl, CH3Br, and C2H5Br, were measured in air and seawater at and around Mace Head, on the west coast of Ireland. The release rates of organic bromines and iodines from seaweeds were determined from incubations of 10 species of brown, red, and green macroalgae collected in the intertidal or subtidal zones of the rocky shore. For all the brown algae studied, iodine was released mainly as CH2I2. However, for several seaweeds, the novel iodine-containing trihalomethanes CHIBr2 and CHI2Cl represented a significant fraction of the released organic iodine. The macroalgae incubation experiments as well as monitoring of the in situ concentrations in a rock pool indicated that natural halocarbon production by seaweeds was stimulated by incident light. The halocarbon fluxes derived from the seaweed incubations, coupled with published detailed biomass surveys, enabled coastal organohalogen seawater concentrations to be estimated. The CHBr3, CH2Br2, and CHBr2Cl concentrations calculated by this method compared well with coastal surface seawater measurements, implying that macroalgae were the major sources of the polybromomethanes. Measured CH3Br, CH3I, and CH2ICl levels were higher than calculated, which may be due to the existence of additional sources. CH3Br production by macroalgae accounted for less than 10% of measured levels in coastal waters. Short-lived iodocarbons such as CH2I2 and CHIBr2 were depleted in surface seawater compared to calculated levels, implying their photolytic loss within the upper water column.

 

Distribution and Sea-Air Fluxes of Biogenic Trace Gases in the Eastern Atlantic Ocean Distribution and Sea-Air Fluxes of Biogenic Trace Gases in the Eastern Atlantic Ocean

Date added: 08/06/2000
Date modified: 07/27/2009
Filesize: 1.44 MB

Baker, A. R., S. M. Turner, W. J. Broadgate, A. Thompson, G. B. McFiggans, O. Vesperini, P. D. Nightingale, P. S. Liss, and T. D. Jickells (2000), Distribution and Sea-Air Fluxes of Biogenic Trace Gases in the Eastern Atlantic Ocean, Global Biogeochem. Cycles, 14(3), 871–886.


Abstract


A number of atmospherically important trace gases (dimethyl sulphide (DMS), methyl iodide (CH3I), and nonmethane hydrocarbons (NMHCs)) were measured simultaneously in the eastern Atlantic Ocean during May 1997. This investigation was part of the U.K. Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) Community Research Program and covered a 200 by 200 nautical mile (1 nautical mile is 1.852 km) area to the west of the Mace Head Atmospheric Research Station on the coast of Ireland. Different spatial and temporal patterns were observed for each of the gases, showing that distinct sources dominate their production in this region: specific species of phytoplankton (DMS), macroalgae (CH3I), total phytoplankton biomass (isoprene), and photochemistry (ethene). Sea-to-air fluxes of the gases are calculated for near and offshore domains, and their temporal variations are discussed. A simple photochemical box model has been used to assess the contributions of the gas fluxes to the levels of the gases observed at Mace Head. Results show that the area studied may constitute a substantial source of DMS, a weak source of CH3I, a small source of ethene at night, and an insignificant source of isoprene to atmospheric levels of these gases measured at Mace Head in western Ireland.

 

Timescale analysis of marine boundary layer aerosol evolution Lagrangian case studies Timescale analysis of marine boundary layer aerosol evolution Lagrangian case studies

Date added: 08/06/2000
Date modified: 07/08/2009
Filesize: 247.97 kB

Hoell, C., C.D. O'Dowd, S.R. Osborne, and D.W. Johnson, Timescale Analysis of Marine Boundary Layer Aerosol Evolution: Lagrangian Case Studies Under Clean and Polluted Cloudy Conditions. Tellus, 52B,423-438, 2000


Abstract


Significant changes were observed in the sub-micron aerosol size distribution during a clean and a polluted Lagrangian study of marine boundary layer (MBL) aerosol and meteorological evolution during ACE-2. These changes were accompanied by significant alterations in boundary layer meteorology and structure. The clean case (LAG1) shows a reduction in the fine mode aerosol from 1050 cm-3 to 750 cm-3 and an increase in the accumulation mode concentration from 76 cm-3 to 162 cm-3 over 26 h. Dominant meteorological features during the same period comprised a reduction in boundary layer height from ap1500 m to ap800 m and an increase in the surface layer wind speed from 5 m s-1 to 15 m s-1. A detailed time-scale analysis, based upon measured data and including processes such as coagulation, condensation, deposition, chemical processing, sea-salt flux and entrainment, suggests that the dominant loss process for fine mode aerosol is coagulation, while the enhancement of accumulation mode aerosol can be almost totally ascribed to enhanced sea-salt aerosol flux into the reduced mixed layer volume. Aerosol size distributions from the polluted Lagrangian (LAG2) indicated little growth in particle diameter, and both fine and accumulation mode were observed to decrease in concentration from 2700 cm-3 to 1150 cm-3 and from 670 cm-3 to 430 cm-3 in 26 h, respectively. Dilution with cleaner free tropospheric air as the boundary layer height increased from ap500 m to >1000 m is suggested to be the primary factor relating to reduced aerosol concentrations in this case. To a smaller extent, coagulation and precipitation scavenging were calculated to be of some importance. For both Lagrangian case studies, meteorological changes, followed by physical aerosol-cloud interactions, appear to have the greatest influence on the MBL aerosol size distribution and number concentration over the given time-scale.

 

Observations of the evolution of the aerosol cloud and boundary layer ACE2 LE Observations of the evolution of the aerosol cloud and boundary layer ACE2 LE

Date added: 08/06/2000
Date modified: 07/03/2009
Filesize: 1.95 MB

Osborne, S. R., D. W. Johnson, R. Wood, B. J. Bandy, M. O. Andrae, C. D. O'Dowd, P. Glantz and K. Noone (1999). Observations of the evolution of the aerosol, cloud and boundary layer dynamic and thermodynamic characteristics during the second Lagrangian experiment of ACE-2. Tellus. 52B, 375-400, 2000


Abstract


During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE-2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy. The Meteorological Research Flight's C-130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s-1 to 16 m s-1 and the accumulation mode (0.1mum to 3.0 mum) aerosol concentrations quadrupled from 50 cm-3 to 200 cm-3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm-3 to 750 cm-3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.

 

Evolution of the aerosol, cloud and boundary layer dynamic and ACE2 Evolution of the aerosol, cloud and boundary layer dynamic and ACE2

Date added: 08/06/2000
Date modified: 07/01/2009
Filesize: 1.38 MB

Osborne, S.M., D.W.Johnson, R. Wood, B.J. Bandy, M.O. Andreae, C.D. O'Dowd, P. Glantz, K.J. Noone, C. Gerbig, J. Rudolph, T.S. Bates, and P.K. Quinn, Evolution of the aerosol, cloud and boundary layer dynamic and thermodynamic characteristics during the second Lagrangian experiment of ACE-2, Tellus, 52B(2), 375-400, 2000, (Ser. No. ACP149).


Abstract


We present observations from the 2nd Aerosol Characterisation Experiment where over a 29-h period between 16–18 July 1997 a tagged column of air was followed by a fully instrumented aircraft. The Lagrangian framework this offered made it possible to measure the evolution of the aerosol size distribution, the cloud structure and microphysics, and the dynamic and thermodynamic structure of the marine boundary layer within a polluted airmass advecting off northwest Europe over the sub-tropical North Atlantic Ocean. The salient observations are presented and analysed. Processes responsible for the evolution are suggested, but quantification of their respective rates must be taken up by future modelling studies. Stratocumulus capped the boundary layer throughout the period that produced negligible washout of aerosol. This implies that the conversion of a continental to a maritime airmass within the cloud-capped sub-tropical marine boundary layer is not controlled by the drizzle process but by entrainment from the free troposphere. We find evidence of processing of aerosol particles by stratocumulus cloud, in particular by aqueous-phase reactions. The processing of the aerosol, realised by modification of the aerosol size distribution in the particle diameter range 0.1–0.5 mum, was complicated by rapid changes in boundary layer height and structure, and also by entrainment of both polluted and relatively clean aerosol from the free troposphere. The cloud microphysics was affected by these changes in the boundary layer aerosol through changes in the cloud condensation nuclei activation spectra. The cloud microphysics was also strongly affected by changes in the dynamics of the boundary layer which included variations (e.g., diurnal) in cloud thickness and an increase in vertical wind speed. Thermodynamic changes within the boundary layer included decoupling due to an increasing sea-surface temperature and a change in the subsidence rate in the free troposphere superimposed on diurnal decoupling. Hypotheses have been devised so that future modellers can focus their efforts to either validate or invalidate potentially important processes.

 

An overview of the Lagrangian experiments undertaken during the NA regional ACE An overview of the Lagrangian experiments undertaken during the NA regional ACE

Date added: 08/06/2000
Date modified: 06/30/2009
Filesize: 1.51 MB

Johnson, D. W., S. R. Osborne, R. Wood, K. Suhre, M. O. Andrae, R. Johnson, S. Businger, P. K. Quinn, T. Bates, P. Durkee, H. Johnson, L. M. Russell, K. Noone, P. Glantz, B. Bandy, C. O'Dowd, S. Rapsomanikis and J. Rudolph. An overview of the Lagrangian experiments undertaken during the North Atlantic Regional Aerosol Characterisation Experiment (ACE - 2). Tellus, 52B, 290-320. 2000.


Abstract

 

One of the primary aims of the North Atlantic regional Aerosol Characterisation Experiment (ACE-2) was to quantify the physical and chemical processes affecting the evolution of the major aerosol types over the North Atlantic. The best, practical way of doing this is in a Lagrangian framework where a parcel of air is sampled over several tens of hours and its physical and chemical properties are intensively measured. During the intensive observational phase of ACE-2, between 15 June 1997 and 24 July 1997, 3 cloudy Lagrangian experiments and 3 cloud-free, Lagrangian experiments were undertaken between the south west tip of the Iberian Peninsula and the Canary Islands. This paper gives an overview of the aims and logistics of all of the Lagrangian experiments and compares and contrasts them to provide a framework for the more focused Lagrangian papers in this issue and future process modelling studies and parametrisation development. The characteristics of the cloudy Lagrangian experiments were remarkably different, enabling a wide range of different physical and chemical processes to be studied. In the 1st Lagrangian, a clean maritime air mass was sampled in which salt particle production, due to increased wind speed, dominated the change in the accumulation mode concentrations. In the 2nd Lagrangian, extensive cloud cover resulted in cloud processing of the aerosol in a polluted air mass, and entrainment of air from the free troposphere influenced the overall decrease in aerosol concentrations in the marine boundary layer (MBL). Very little change in aerosol characteristics was measured in the 3rd Lagrangian, where the pollution in the MBL was continually being topped up by entraining air from a residual continental boundary layer (CBL) above. From the analysis of all the Lagrangian experiments, it has been possible to formulate, and present here, a generalised description of a European continental outbreak of pollution over the sub-tropical North Atlantic.

 

A modeling study of iodine chemistry in the marine boundary layer A modeling study of iodine chemistry in the marine boundary layer

Date added: 08/06/2000
Date modified: 07/27/2009
Filesize: 1.4 MB

McFiggans, G., J. M. C. Plane, B. J. Allan, L. J. Carpenter, H. Coe, and C. O'Dowd (2000), A modeling study of iodine chemistry in the marine boundary layer, J. Geophys. Res., 105(D11), 14,371–14,385.


Abstract


An observationally constrained photochemical box model has been developed to investigate the atmospheric chemistry of iodine in the marine boundary layer, motivated by recent measurements of the iodine monoxide (IO) radical (Allan et al., this issue). Good agreement with the time series of IO measured at a midlatitude coastal station was achieved by using a reaction scheme that included recycling of iodine through marine aerosol. The strong diurnal variation in IO observed in the subtropical Atlantic was satisfactorily modeled by assuming a constant concentration of iodocarbons that photolyzed to produce roughly 1 × 104 iodine atoms cm−3 s−1 at midday. The significance of the occurrence of IO at concentrations of up to 4 parts per trillion in the marine boundary layer was then considered from three angles. First, the iodine-catalyzed destruction of ozone was shown to be of a magnitude similar to that caused by odd-hydrogen photochemistry, with up to 13% of the available ozone destroyed per day in a marine air mass. Second, the enrichment factor of iodine in marine aerosol compared with surface seawater was predicted to increase to values of several thousand, in sensible accord with observations. Most of the enrichment should be due to the accumulation of iodate, although other iodine species may also be present, depending on the rate of aerosol recycling. Third, the denoxification of the marine boundary layer was found to be significantly enhanced as a result of aerosol uptake of IONO2, formed from the recombination of IO with NO2.

 

Can new particle formation occur in the clean marine boundary layer Can new particle formation occur in the clean marine boundary layer

Date added: 08/06/2000
Date modified: 07/27/2009
Filesize: 1.47 MB

Pirjola, L., C. D. O'Dowd, I. M. Brooks, and M. Kulmala (2000), Can new particle formation occur in the clean marine boundary layer?, J. Geophys. Res., 105(D21), 26,531–26,546.


Abstract


An analysis of new particle formation probability in the marine boundary layer (MBL) is conducted using a detailed aerosol dynamics and gas-phase chemistry model, thermodynamically correct classical binary (H2O-H2SO4) nucleation theory, and recently developed ternary (H2O-H2SO4-NH3) nucleation theory. Additionally, the effect of boundary-layer meteorology (i.e., adiabatic cooling, small scale fluctuations, and entrainment) in enhancing nucleation is also examined. The results indicate that for typical marine conditions, binary nucleation does not occur for any realistic conditions regardless of adiabatic cooling, turbulent fluctuations, or entrainment. For polar marine conditions, binary nucleation does occur due to lower temperatures, and is enhanced due to turbulent fluctuations. An increase in detectable particle sizes (N 3>3 nm), is only seen after multiple boundary layer circulations for conditions of high dimethyl sulphide (DMS) concentrations (400 ppt). Under extreme conditions of entrainment of free-troposphere layers containing very low aerosol condensation sinks and extraordinary high sulphuric acid concentrations (>108 molecules cm−3), increases in detectable particles up to 10,000 cm−3 are predicted only in polar marine air, but are viewed as unlikely to occur in reality. Comparison of model simulations with observed values of DMS and sulphuric acid in polar marine air masses suggest that binary nucleation may lead to an enhancement of ≈1000 cm−3 in N 3 particle concentration, but not to enhancements of ≈10,000 cm−3. Ternary nucleation is predicted to occur under realistic sulphuric acid (1.2 × 107 molecules cm−3) and ammonia (>5 ppt) concentrations; however, significant growth to detectable sizes (N 3) only occurs for DMS concentrations of the order of 400 ppt and very low aerosol condensation sinks, but these conditions are thought to be very infrequent in the MBL and are unlikely to make a significant contribution to the general MBL aerosol concentration. It is plausible that the background MBL aerosol concentration could be maintained by a slow, almost undetectable production rate, and not by noticeable nucleation events where large enhancements in N 3 concentrations are observed. The former requires sustained DMS concentrations of the order of 100 ppt which seems unlikely. In summary, the occurrence of new particles in the unperturbed MBL would be difficult to explain by DMS emissions alone. DMS emissions can explain the occurrence of thermodynamically stable sulphate clusters, but under most conditions, to grow these clusters to detectable sizes before they are scavenged by coagulation, an additional condensable species other than DMS-derived sulphuric acid would be required. In the event, however, of significant removal of the preexisting aerosol due to precipitation, the MBL aerosol can be replenished through growth of new particle formed through ternary nucleation under moderately high DMS concentrations.

 

The effect of clouds on aerosol growth in the rural atmosphere The effect of clouds on aerosol growth in the rural atmosphere

Date added: 08/06/2000
Date modified: 07/07/2009
Filesize: 206.46 kB

Colin D. O'Dowd, Jason A. Lowe, Michael H. Smith, The effect of clouds on aerosol growth in the rural atmosphere, Atmospheric ResearchVolume 54, Issue 4, , August 2000, Pages 201-221.


Abstract


Measurements of accumulation mode aerosol in the atmospheric boundary layer under cloudy and cloud-free conditions, and in the lower free troposphere under cloud-free conditions, were conducted over the rural northwest of England. Normalised size distributions in the cloud-free boundary layer (CFBL) and the cloud-free free troposphere (CFFT) exhibited almost identical spectral similarities with both size distributions possessing a concentration peak mode-radius of 0.05 μm or less. By comparison, aerosol distributions observed in cloudy air exhibited a distinctive log-normal distribution with mode-radii occurring at 0.1 μm concomitant with a local minimum at 0.05 μm. The consistent and noticeable difference in spectral features observed between cloudy and cloud-free conditions suggest that a greater amount of gas-to-particle conversion occurs on cloudy days, presumably through in-cloud aqueous phase oxidation processes, leading to larger sized accumulation mode particles. Apart from the distinct difference between cloudy and cloud-free aerosol spectra on cloudy days, aerosol concentration and mass were observed to be significantly enhanced above that of the ambient background in the vicinity of clouds. Volatility analysis during one case of cloud processing indicated an increase in the relative contribution of aerosol mass volatile at temperatures characteristic of sulphuric acid, along with a smaller fraction of more volatile material (possibly nitric acid and/or organic aerosol). Growth-law analysis of possible growth mechanisms point to aqueous phase oxidation of aerosol precursors in cloud droplets as being the only feasible mechanism capable of producing the observed growth. The effect of cloud processing is to alter the cloud condensation nuclei (CCN) supersaturation spectrum in a manner which increases the availability of CCN at lower cloud supersaturations.

 

Modeling heterogeneous sulphate production in maritime stratiform clouds Modeling heterogeneous sulphate production in maritime stratiform clouds

Date added: 08/06/2000
Date modified: 07/03/2009
Filesize: 1.48 MB

O'Dowd, C. D., J. A. Lowe, N. Clegg, M. H. Smith, and S. L. Clegg (2000), Modeling heterogeneous sulphate production in maritime stratiform clouds, J. Geophys. Res., 105(D6), 7143–7160.


Abstract


A size-resolved droplet physico chemical model linked to a Lagrangian parcel framework was developed and used to study the heterogeneous sulphate production process in marine stratiform clouds. This model study provides a rigorous approach to cloud chemistry processing by treating the effects of non ideal chemistry on both aqueous phase equilibration and droplet growth using the Pitzer method to overcome many of the shortcomings of alternative thermodynamic methods. In addition, the current study uses a multi modal representation of sea-salt aerosol, rather than the single mode used in most previous work. The results of the model simulations showed a distribution of sulphate production across the aerosol size range that was non linear and that a significant fraction (≈75–90%) of the sulphate was produced in droplets formed on sea-salt aerosol particles. The number of sea-salt particles affected both the total amount of sulphate produced and the fraction produced on cloud droplets formed around non-sea-salt sulphate aerosol. Dissolved ozone and hydrogen peroxide were both important as oxidant species, although the ozone-driven oxidation pathway was dominant in droplets formed on sea-salt aerosol particles. The rate of sulphate production was found to be a non linear function of the gaseous sulphur dioxide concentration at cloud base and only very weakly dependent on sulphate nuclei concentration. A comparison of sulphate production in cloud and below cloud indicates that sulphate production in sea-salt nuclei is not limited by the carbonate buffer and that in-cloud production can exceed, many times, that of cloud-free production due to the “virtual” buffering capacity of the cloud. The use of non ideal solution effects appear important, particularly for clean-to-moderately polluted SO2 concentrations (< 500 parts per trillion) and when sea-salt nuclei are present, resulting in at least 40% lower sulphate production when compared to ideal solution simulations.

 

Modelling heterogeneous sulphate production in maritime stratiform clouds Modelling heterogeneous sulphate production in maritime stratiform clouds

Date added: 08/06/2000
Date modified: 07/21/2009
Filesize: 1.48 MB

O'Dowd, C. D., J. A. Lowe, N. Clegg, M. H. Smith, and S. L. Clegg (2000), Modelling heterogeneous sulphate production in maritime stratiform clouds, J. Geophys. Res., 105(D6), 7143–7160.


Abstract


A size-resolved droplet physico chemical model linked to a Lagrangian parcel framework was developed and used to study the heterogeneous sulphate production process in marine stratiform clouds. This model study provides a rigorous approach to cloud chemistry processing by treating the effects of non ideal chemistry on both aqueous phase equilibration and droplet growth using the Pitzer method to overcome many of the shortcomings of alternative thermodynamic methods. In addition, the current study uses a multi modal representation of sea-salt aerosol, rather than the single mode used in most previous work. The results of the model simulations showed a distribution of sulphate production across the aerosol size range that was non linear and that a significant fraction (≈75–90%) of the sulphate was produced in droplets formed on sea-salt aerosol particles. The number of sea-salt particles affected both the total amount of sulphate produced and the fraction produced on cloud droplets formed around non-sea-salt sulphate aerosol. Dissolved ozone and hydrogen peroxide were both important as oxidant species, although the ozone-driven oxidation pathway was dominant in droplets formed on sea-salt aerosol particles. The rate of sulphate production was found to be a non linear function of the gaseous sulphur dioxide concentration at cloud base and only very weakly dependent on sulphate nuclei concentration. A comparison of sulphate production in cloud and below cloud indicates that sulphate production in sea-salt nuclei is not limited by the carbonate buffer and that in-cloud production can exceed, many times, that of cloud-free production due to the “virtual” buffering capacity of the cloud. The use of non ideal solution effects appear important, particularly for clean-to-moderately polluted SO2 concentrations (< 500 parts per trillion) and when sea-salt nuclei are present, resulting in at least 40% lower sulphate production when compared to ideal solution simulations.

 

The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm

Date added: 08/06/2000
Date modified: 07/08/2009
Filesize: 176.35 kB

Durkee, P. and co authors, 2000: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypotheses 1i and 1ii. J. Atmos. Sci., 57, 2554-2569.


Abstract


Anomalously high reflectivity tracks in stratus and stratocumulus sheets associated with ships (known as ship tracks) are commonly seen in visible and near-infrared satellite imagery. Until now there have been only a limited number of in situ measurements made in ship tracks. The Monterey Area Ship Track (MAST) experiment, which was conducted off the coast of California in June 1994, provided a substantial dataset on ship emissions and their effects on boundary layer clouds. Several platforms, including the University of Washington C-131A aircraft, the Meteorological Research Flight C-130 aircraft, the National Aeronautics and Space Administration ER-2 aircraft, the Naval Research Laboratory airship, the Research Vessel Glorita, and dedicated U.S. Navy ships, participated in MAST in order to study processes governing the formation and maintenance of ship tracks. This paper tests the hypotheses that the cloud microphysical changes that produce ship tracks are due to (a) particulate emission from the ship's stack and/or (b) sea-salt particles from the ship's wake. It was found that ships powered by diesel propulsion units that emitted high concentrations of aerosols in the accumulation mode produced ship tracks. Ships that produced few particles (such as nuclear ships), or ships that produced high concentrations of particles but at sizes too small to be activated as cloud drops in typical stratocumulus (such as gas turbine and some steam-powered ships), did not produce ship tracks. Statistics and case studies, combined with model simulations, show that provided a cloud layer is susceptible to an aerosol perturbation, and the atmospheric stability enables aerosol to be mixed throughout the boundary layer, the direct emissions of cloud condensation nuclei from the stack of a diesel-powered ship is the most likely, if not the only, cause of the formation of ship tracks. There was no evidence that salt particles from ship wakes cause ship tracks.

 

Emissions from Ships with respect to Their Effects on Clouds Emissions from Ships with respect to Their Effects on Clouds

Date added: 08/06/2000
Date modified: 07/01/2009
Filesize: 302.93 kB

Hobbs, P.V., T.J. Garrett, and co-authors, 2000: Emissions from ships with respect to their effects on clouds, J. Atmos. Sci., 57, 2570-2590


Abstract


Emissions of particles, gases, heat, and water vapor from ships are discussed with respect to their potential for changing the microstructure of marine stratiform clouds and producing the phenomenon known as ship tracks. Airborne measurements are used to derive emission factors of SO2 and NO from diesel-powered and steam turbine-powered ships, burning low-grade marine fuel oil (MFO); they were ∼15-89 and ∼2-25 g kg-1 of fuel burned, respectively. By contrast a steam turbine-powered ship burning high-grade navy distillate fuel had an SO2 emission factor of ∼6 g kg-1. Various types of ships, burning both MFO and navy distillate fuel, emitted from ∼4 X 1015 to 2 X 1016 total particles per kilogram of fuel burned (∼4 X 1015-1.5 X 1016 particles per second). However, diesel-powered ships burning MFO emitted particles with a larger mode radius (∼0.03-0.05 μm) and larger maximum sizes than those powered by steam turbines burning navy distillate fuel (mode radius ∼0.02 μm). Consequently, if the particles have similar chemical compositions, those emitted by diesel ships burning MFO will serve as cloud condensation nuclei (CCN) at lower supersaturations (and will therefore be more likely to produce ship tracks) than the particles emitted by steam turbine ships burning distillate fuel. Since steam turbine-powered ships fueled by MFO emit particles with a mode radius similar to that of diesel-powered ships fueled by MFO, it appears that, for given ambient conditions, the type of fuel burned by a ship is more important than the type of ship engine in determining whether or not a ship will produce a ship track. However, more measurements are needed to test this hypothesis. The particles emitted from ships appear to be primarily organics, possibly combined with sulfuric acid produced by gas-to-particle conversion of SO2. Comparison of model results with measurements in ship tracks suggests that the particles from ships contain only about 10% water-soluble materials. Measurements of the total particles entering marine stratiform clouds from diesel-powered ships fueled by MFO, and increases in droplet concentrations produced by these particles, show that only about 12% of the particles serve as CCN. The fluxes of heat and water vapor from ships are estimated to be ∼2-22 MW and ∼0.5-1.5 kg s-1, respectively. These emissions rarely produced measurable temperature perturbations, and never produced detectable perturbations in water vapor, in the plumes from ships. Nuclear-powered ships, which emit heat but negligible particles, do not produce ship tracks. Therefore, it is concluded that heat and water vapor emissions do not play a significant role in ship track formation and that particle emissions, particularly from those burning low-grade fuel oil, are responsible for ship track formation. Subsequent papers in this special issue discuss and test these hypotheses.

 

A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer

Date added: 08/06/2000
Date modified: 06/30/2009
Filesize: 509.16 kB

Noone, K. J., D. W. Johnson, et al. (2000). "A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer." J. Atmos. Sci. 57(16): 2748-2764.


Abstract

 

A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.

The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

 

The nitrate radical in the remote marine boundary layer The nitrate radical in the remote marine boundary layer

Date added: 08/06/2000
Date modified: 07/23/2009
Filesize: 1.19 MB

Allan B. J., G. McFiggans, J. M. C. Plane, H. Coe and G. G. McFadyen The Nitrate Radical in the Remote Marine Boundary Layer. J. Geophys. Res., 24191-24204, 2000.


Abstract


The technique of differential optical absorption spectroscopy has been used to determine the nitrate radical (NO3) concentration in the remote marine boundary layer. The instrument was deployed in campaigns at Mace Head on the west coast of Ireland and on the north coast of Tenerife. A comprehensive set of NO3 measurements under a wide variety of conditions was obtained. For instance, nighttime NO3 levels at Mace Head ranged from 1 to 5 ppt in the clean marine atmosphere and from 1 to 40 ppt in semipolluted continental air masses. The nightly averaged NO3 lifetime varied from less than 2 min to 4 hours. At Tenerife, where there was less variability in conditions, nighttime NO3 ranged from 1 to 20 ppt, with nightly averaged lifetimes between 4 and 34 min. A photochemical box model, fully constrained by measurements of species that control the formation and removal of NO3, was then employed to determine the major loss mechanisms of the radical. This shows that NO3 in the clean marine air masses is very sensitive to small increases in the concentrations of dimethyl sulphide (DMS) and nonmethane hydrocarbons and that the radical is rarely in chemical steady state. At Tenerife, 80 - 90% of NO3 was removed by reaction with DMS. However, in continental air masses with little marine influence, indirect losses of NO3 via dinitrogen pentoxide (N2O5) usually dominate. It appears that in much of the North Atlantic, NO3 is a more efficient sink for DMS compared to the hydroxyl radical (OH) during the day.

 

Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combinat Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combinat

Date added: 08/06/2000
Date modified: 07/23/2009
Filesize: 1.6 MB

James, J. D. ; Harrison, Roy M. ; Savage, N. H. ; Allen, A. G. ; Grenfell, J. L. ; Allan, B. J. ; Plane, J. M. C. ; Hewitt, C. N. ; Davison, B. ; Robertson, L.  2000, Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model, J. Geophys. Res. Vol. 105 , No. D21 , p. 26,379 (2000JD900375)


Abstract


Using a combination of field measurement data and a modified photochemical box model, strong evidence is presented to suggest that the rate of daytime oxidation of dimethyl sulfide (DMS) by OH radicals is insufficient to describe the measured conversion. Quasi-Lagrangian measurements were made at two sites in the eastern Atlantic (Research Vessel and Mace Head Research Station, Ireland) as part of the Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) program. Periods of connected flow between the two sites were identified, air parcel transit times were estimated, and measurements of the main DMS oxidation products (MSA, SO2, and nss-SO42-) were compared with model predictions to establish whether the model's chemical mechanism could account for observed changes. The main finding was that during daytime periods with maritime air masses, the model failed to predict a sufficient increase in DMS oxidation products during the estimated transit time. This was despite a tendency to overprediction of the progress of nitrogen chemistry during air mass advection, and independent checks on the model estimates of hydroxyl radical concentrations through measurements. In the light of this, the involvement of halogen species (most probably halogen oxides) or heterogeneous oxidation processes is tentatively suggested as the cause of enhanced daytime DMS oxidation in the marine boundary layer (MBL). Increasing the rate constant for the OH + DMS reaction by a factor of 3.3 (as a crude way of simulating parallel channels of DMS oxidation) permitted model results to reproduce the measurements very much more closely.

 

Observations of iodine monoxide in the remote marine boundary layer Observations of iodine monoxide in the remote marine boundary layer

Date added: 08/06/2000
Date modified: 07/23/2009
Filesize: 584.58 kB

Allan B. J., G. McFiggans, J. M. C. Plane and H. Coe Observations of iodine monoxide in the remote marine boundary layer. J. Geophys. Res., 105, 14363-14369, 2000.


Abstract


We report measurements of the iodine monoxide (IO) radical in the marine boundary layer at three remote sites: Mace Head (Ireland), Tenerife (Canary Islands), and Cape Grim (Tasmania). IO was observed by long-path differential optical absorption spectroscopy using the A2Π3/2-X2Π3/2 electronic transition between 415 and 450 nm. The daytime IO concentration at these three locations was found to vary from below the detection limit (≤0.2 parts per trillion (ppt)) to a maximum of 4 ppt, with an average of about 1 ppt. Of particular note is that the IO observed off the north coast of Tenerife, which is probably typical of the open ocean sub-tropical North Atlantic, exhibited a distinct diurnal cycle which correlated strongly with the solar actinic flux in the near UV. IO was also observed at Cape Grim to be present at much lower levels (0.3 ppt) in westerly air from the Southern Ocean. As is shown in the companion paper (McFiggans et al., this issue), these measurements of IO are satisfactorily reproduced by a photochemical box model incorporating the recycling of iodine through marine aerosol. This model indicates that the direct iodine-catalyzed destruction of ozone in the boundary layer may well be similar to the losses caused by odd-hydrogen photochemistry and dry deposition. The significance of this work is that IO is probably present in much of the open ocean boundary layer, at levels where it may cause significant depletion of ozone.

 

 

Behavior of ultrafine particles in continental and marine air masses at a rural site in the Uni Behavior of ultrafine particles in continental and marine air masses at a rural site in the Uni

Date added: 08/06/2000
Date modified: 07/09/2009
Filesize: 1.44 MB

Coe H., P. I. Williams, G. McFiggans, M. W. Gallagher, K. M. Beswick, K. N. Bower and T. W. Choularton Behavior of ultrafine particles in continental and marine air masses at a rural site in the United Kingdom. J. Geophys. Res., 105, 26891-26905, 2000


Abstract


Particle size distribution measurements were made at a coastal site in the United Kingdom. These are presented, and the behavior of recently formed ultrafine particles is discussed. No ultrafine particles were observed in maritime air masses; however, 3 to 7 nm particles were frequently observed at enhanced concentrations when the wind direction was from the land. Their formation was favored at lower temperatures, when 1 ppbv or more of SO2 was present and in air masses that had not been aged extensively. On days when enhanced ultrafine particle concentrations were observed, 3 nm particles increased sharply in the morning, approximately 30 to 90 min after the UV solar flux first increased. By early afternoon the ultrafine particle concentration had returned to background levels. Rapid measurements of 5 nm particles showed no correlation with turbulence parameters, although the boundary layer mixing scales were similar to growth times of freshly nucleated particles to 5 nm diameter. However, ultrafine particle concentrations do correlate with the availability of sulphuric acid vapor. A delay of approximately an hour between the increase of H2SO4 in the morning and a large increase in ultrafine particle concentrations is due to the growth of particles to observable sizes, not the nucleation process itself. An analysis of the timescales for growth showed that coagulation may be important immediately after the particles have nucleated but its effectiveness reduces as number concentration falls. Conversely, growth by condensation is initially slow due to the Kelvin effect but increases in importance as the particles reach observable sizes.

 

The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head

Date added: 08/06/2000
Date modified: 07/23/2009
Filesize: 881.19 kB

Cape, J.N., J Methven and L.E Hudson, The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland, Atmos. Environ., 34, 3651-3663, 2000, (Ser. No. ACP088).


Abstract

 

A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995-1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.

 

Nitrogen deposition to the eastern Atlantic Ocean The importance of southeasterly flow Nitrogen deposition to the eastern Atlantic Ocean The importance of southeasterly flow

Date added: 08/06/2000
Date modified: 07/23/2009
Filesize: 782.42 kB

Spokes, L.J., Yeatman, S.G., Cornell, S.E. and Jickells, T.D., 2000. Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow. Tellus 52B, pp. 37–49.


Abstract


Converting measured concentrations into fluxes and using estimates of biological productivity in the coastal waters of the eastern Atlantic Ocean enables us to determine the role of the atmosphere as a source of biologically essential species, including nitrate and ammonium, to the marine biota. To understand the effects of the atmosphere as a source of nitrogen capable of promoting new production, we need to know both the seasonality of the input as well as the effects of extreme high deposition events which, while small in overall annual budget terms, maybe able to extend, or even promote, phytoplankton growth under nutrient depleted summer conditions. Aerosols and rainwater were collected at both Mace Head and at sea aboard RRS Challenger. Temporal patterns have been interpreted using airmass back trajectories which give the predicted air path prior to arrival at the sampling site. Low levels of both nitrate and ammonium are seen associated with marine westerly flow across the Atlantic and northerly air originating in the Arctic region. As expected, marine derived sodium, chloride, magnesium and seasalt sulphate are high during these periods. High concentration nitrate and ammonium events are seen associated with south-easterly flow where the airmass passes over the UK and northern Europe prior to arrival on the west coast of Ireland. In the polluted atmosphere, nitrate exists as nitric acid and as fine mode (< 1 μm diameter) ammonium nitrate aerosol. In the coastal zone, nitric acid reacts with coarse mode seasalt aerosols to form coarse mode (> 1 μm diameter) sodium nitrate: HNO3(g) + NaCl(s) → NaNO3(s) + HCl(g). This seasalt displacement reaction not only enhances dry nitrate deposition through more efficient gravitational settling of large particles, but also increases the efficiency of precipitational scavenging via inertial impaction. By looking at the size distribution of nitrate, we can see evidence for the seasalt displacement reaction. Under the polluted south-easterly flow, ∼40-60% of the nitrate occurs in the coarse mode fraction. Under clean marine conditions, the seasalt displacement reaction results in almost complete conversion of nitrate from the fine to the coarse aerosol mode. By converting measured wet and dry nitrate, ammonium and organic nitrogen concentrations into fluxes and comparing the data with estimates of biological productivity in the surface waters, our data suggest that ∼ 30% of new production in eastern Atlantic surface waters off Ireland can be supported by atmospheric inputs in May 1997 and that most of the input occurs during short lived, high-concentration, south-easterly transport events.

 

Intercomparison of formaldehyde measurements in clean and polluted atmospheres Intercomparison of formaldehyde measurements in clean and polluted atmospheres

Date added: 08/06/2000
Date modified: 07/24/2009
Filesize: 222.47 kB

Cardenas, L.M., Brassington, D.J., Allan, B.J., Coe, H., Alicke, B., Platt, U., Wilson, K.M., Plane, J.M.C. and Penkett, S.A., 2000. Intercomparison of formaldehyde measurements in clean and polluted atmospheres. Journal of Atmospheric Chemistry 37, pp. 53–80.


Abstract


Three different techniques used tomeasure atmospheric formaldehyde were compared duringa field campaign carried out at a clean maritime siteon the West coast of Ireland. Two spectroscopictechniques Differential Optical AbsorptionSpectroscopy (DOAS) and Tunable Diode Laser AbsorptionSpectroscopy (TDLAS), together with a glass coil/Hantzschreaction/fluorescence technique, wereemployed for measurements of atmospheric formaldehydeof the order of a few hundred pptv. The betteragreement was observed between the fluorescence andDOAS instruments.Two DOAS instruments were compared to the glasscoil/Hantzsch reaction/fluorescence technique at asemi-polluted site on the North Norfolk coast, U.K.,where concentrations of formaldehyde were observed atlevels up to 4 ppbv. A very good agreement wasobserved between the two instruments.The glass coil/Hantzsch reaction/fluorescence and theTDLAS instruments were also deployed simultaneously inorder to measure indoor air inside a mobile laboratorylocated at the Imperial College Silwood Park site nearAscot, U.K. The doors of the mobile laboratory wereleft open in order to obtain the backgroundformaldehyde concentrations. Closing them afterwardsallowed us to observe the increase in concentrationsas a result of indoor emissions. The agreement betweenthe two instruments was outstanding (correlationcoefficient was 99%).The results from this study showed that of the fourinstruments included in this intercomparison the glasscoil/Hantzsch reaction/fluorescence technique provedthe most suitable for continuous measurements offormaldehyde in the background atmosphere.

A detailed case study of isoprene chemistry during the EASE96 A detailed case study of isoprene chemistry during the EASE96

Date added: 08/05/2000
Date modified: 07/27/2009
Filesize: 349.47 kB

Carslaw, N., N. Bell, A.C. Lewis, J.B. McQuaid, and M.J. Pilling, 2000: A detailed case study of isoprene chemistry during the EASE96 Mace Head campaign. Atmos. Environ., 34, 2827-2836, doi:10.1016/S1352-2310(00)00088-1.


Abstract


A detailed chemical mechanism has been used in conjunction with high-quality field measurements in order to assess the potential role of isoprene at a clean coastal Northern Hemisphere site. The importance of isoprene as a source of peroxy radicals, formaldehyde and ozone is discussed in some detail for a case study day (July 17 1996). Between 10:00 and 16:00h GMT, isoprene accounts on average for 15% of the OH removal, yet is responsible for the production of about 30% of the HO2 radicals. Isoprene is also responsible for between 40-60% of the HCHO formation, and 20-40% of the 2 ppb h-1 conversion of NO to NO2 by peroxy radicals. We discuss the significant time lag between HCHO formation and destruction, a time lag that must be accounted for in order to accurately calculate the rate of HO2 production from isoprene degradation, and the implications of the isoprene oxidation for atmospheric chemistry.

 

Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the 1994–1998 period Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the 1994–1998 period

Date added: 08/01/2000
Date modified: 07/09/2009
Filesize: 1.57 MB
Simmonds, P. G., R. G. Derwent, S. O'Doherty, D. B. Ryall, L. P. Steele, R. L. Langenfelds, P. Salameh, H. J. Wang, C. H. Dimmer, and L. E. Hudson (2000), Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the 1994–1998 period, J. Geophys. Res., 105(D10), 12,105–12,121

Abstract


Continuous high-frequency (every 40-min) automatic measurements of hydrogen have been made at the Mace Head atmospheric research station on the Atlantic Ocean coast of Ireland throughout 1994–1998. These observations represent one the most comprehensive in situ records of a trace gas that has received comparatively little attention. Individual measurements have been sorted by four independent methods to separate clean, maritime air masses from regionally polluted European air masses. Hydrogen concentrations in midlatitude Northern Hemisphere baseline air show a distinct seasonal cycle with highest concentrations during spring and lowest concentrations during late autumn, with a peak-to-trough amplitude of 38 ± 6 ppb, averaged over the observed seasonal cycles from 1994 to 1998. The mean hydrogen concentration in midlatitude Northern Hemisphere baseline air on January 1, 1995, was estimated as 496.5 ppb with an upward trend of 1.2 ± 0.8 ppb yr−1. Evidence has also been obtained for European pollution sources with source strength of about 0.8 Tg yr−1 and for deposition of hydrogen to soils. The observation of slightly elevated hydrogen concentrations relative to baseline levels in tropical maritime air masses points to a latitudinal gradient in hydrogen with higher concentrations in lower latitudes of the Northern Hemisphere and in the Southern Hemisphere. This is confirmed by comparable hydrogen observations at Cape Grim, Tasmania, which are consistently higher than measurements recorded at Mace Head. Mean hemispheric concentrations of 504 and 520 ppb have been estimated for the Northern and Southern Hemispheres, respectively, for January 1, 1996, corresponding to a total atmospheric hydrogen burden of 182 Tg.

Relationships between condensation nuclei number concentration, tides, and standard meteorological variables at Mace Head, Ireland Relationships between condensation nuclei number concentration, tides, and standard meteorological variables at Mace Head, Ireland

Date added: 07/31/2000
Date modified: 07/23/2009
Filesize: 1.21 MB

O'Brien, E. W., Jennings, S.G., Geever, M., and Kleefeld, C. (2000). Relationships between condensation nuclei number concentration, tides, and standard meteorological variables at Mace Head, Ireland. J. Geophys. Res., 105, 1973-1986.


Abstract


The set of hourly averaged condensation nuclei (CN) data collected at Mace Head during 1991-1994 was examined for relationships that might exist between CN number concentrations and the more commonly measured meteorological variables, including tides. CN number concentrations at Mace Head can be characterized by typically low background levels (less than about 700 particles cm-3) when the wind is from the west, somewhat higher background levels (1000-4000 particles cm-3) when the wind is from the east, with sporadic bursts of short-lived discrete events of more than 10,000 cm-3 for several hours. These events occur typically during early afternoon and are normally associated with slack winds and anomalously warm, dry air. They appear to be independent of pressure, wind direction and precipitation. They can occur any time during the year, although the strongest events tend to occur during spring and autumn. Large-amplitude low tides also occur predominantly in the early afternoon during this observing period. We present evidence that large CN concentration events occur preferentially after exceptionally low tides during daylight. A neural network was employed to train the standard meteorological variables to predict CN concentrations. Baseline forecasts of CN counts for the final 180 days of the observing period were made using lagged values of all other variables. Further forecasts were made with some variables removed from the predictor set. The best correlation between the predicted values and the verifying data over the 180 days was 0.67, which was obtained from a 1-hour forecast using knowledge of all variables except temperature. Other variables whose removal improved the forecast (or whose presence degraded it) were pressure and wind speed. The best predictors of CN values were wind direction, relative humidity, and time of day. An elementary nearest neighbor, or historical analogue approach to predicting the same set of CN values generated lower correlations with the verifying data but generated a much more accurate probability distribution function.

European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland

Date added: 07/31/2000
Date modified: 07/24/2009
Filesize: 1.37 MB

Biraud, S., Ciais, P., Ramonet, M., Simmonds, P.G., Kazan, V., Monfray, P., O'Doherty, S., Spain, T.G., and Jennings, S.G. (2000).European greenhouse gas emissions estimated from continuous atmospheric measurements and Radon 222 at Mace Head, Ireland. J. Geophys. Res., 105, 1351-1366.


Abstract


Flux estimates of CO2, CH4, N2O. and CFCs over western Europe have been inferred from continuous atmospheric records of these species at the atmospheric research station of Mace Head, Ireland. We use radon (222Rn) which has a fairly uniform source over continents as a reference compound to estimate unknown sources of other species. The correlation between each species and 222Rn is calculated for a suite of synoptic events that have been selected in the Mace Head record over the period 1996/97. In the following, we describe the method and its uncertainties, and we establish data selection criteria that minimize the influence of local sources over Ireland, in the vicinity of the station, in order to select synoptic events originating from western Europe. We estimate western European flux densities of 45-30 103 kg C km-2 month-1 during wintertime for CO2, of 4.8-3.5 10 kg CH4 km-2 yr-1, 475-330 kg N2O km-2 yr-1. 2.5-1.8 kg CFC-11 km-2 yr-1 for CFC-11, and 4.2-2.9 kg CFC-12 km-2 yr-1 for CFC-12. Our estimates are independent, although in good agreement with those produced by inventories, except for CFC- 1 where our estimate is much lower than the inventory.

Biogenic aerosol formation in the boreal forest Biogenic aerosol formation in the boreal forest

Date added: 07/31/2000
Date modified: 07/01/2009
Filesize: 469.52 kB

Kulmala, M. K. Hämeri, J.M. Mäkelä, P. P. Aalto, L. Pirjola, M. Väkevä, E. D. Nilsson, I.K.Koponen, G. Buzorius, P. Keronen, g. Rannik, L. Laakso, T. Vesala, K. Bigg, W. Seidl, R. Forkel, T. Hoffmann, J. Spanke, R. Jansson, M. Shimmo, H-C. Hansson, C.D. O'Dowd, E. Becker, J. Paatero, K. Teinilä, R. Hillamo, amd Y. Viisanen, Biogenic aerosol formation in the boreal forest, Boreal Environment Research, 4, 279-280, 2000


Abstract


Aerosol formation and subsequent particle growth in the ambient air have been frequently observed at the boreal forest site (SMEAR II station), southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on a) the determination of formation mechanisms of aerosol particles in the boreal forest site, and b) the verification of emissions of secondary organic aerosols from the boreal forest site, including the quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. Although the exact formation route for 3 nm particles is still unclear, the project results can be summarised as follows: (i) The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia) and the growth to observable sizes is mainly due to condensation of organic vapours. However, we do not have a direct proof of these phenomena, since it is impossible to determine the composition of 1 to 5-nm-size particles using the present state-of-art instrumentation; (ii) If nucleation takes place, it always occurs in cold-air advection in polar and Arctic air masses at low cloudiness, and the nucleation is closely connected to the onset of strong turbulence, convection, and entrainment in the morning-noon transition from a stable to an unstable stratified boundary layer; (iii) The emissions rates for several gaseous compounds have been verified. The model calculations showed that the amount of the condensable vapour needed for observed growth of aerosol particles is in the range 1–5 x 107 cm–3. The estimations for the vapour source rate are in the range 3–8 x 104 cm–3s–1.

Aerosol physico-chemical characteristics over a boreal forest determined by volatility analysis Aerosol physico-chemical characteristics over a boreal forest determined by volatility analysis

Date added: 07/31/2000
Date modified: 06/30/2009
Filesize: 154.04 kB

O'Dowd, C.D., E. Becker, J.M. Makela, M. Kulmala, Aerosol physic-chemical characteristics over a boreal forest determined by volatility analysis, Boreal Environment Research, 4, 337-348, 2000


Abstract


A thermal volatility technique was used in the boreal forest environment to examine accumulation mode (0.05–0.35 µm radius) physico-chemical properties as a function of air mass origin. Three primary aerosol species were identified in all air masses: (1) a semi-volatile organic component, (2) ammonium sulphate, and (3) a non-volatile component thought to comprise mostly of soot carbon. Under some conditions, sulphuric acid was also identified, as was sea salt. Following nucleation and growth of new particles into accumulation mode sizes, the organic fraction of accumulation mode aerosol, by mass, was observed to increase from 30%, prior to and during the nucleation event, up to 75% by the end of the growth period, indicating a substantial fraction of organic mass condensing onto newly formed particles.

Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4 Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4

Date added: 07/27/2000
Date modified: 07/27/2009
Filesize: 522 kB

Berresheim, H., T. Elste, C. Plass-Dulmer, F. L. Eisele and D. J. Tanner (2000). Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4. International Journal of Mass Spectrometry 202 (1-3): 91-109.

 


Abstract


An atmospheric pressure/chemical ionization mass spectrometer (AP/CIMS) has been developed for continuous long-term
measurements of atmospheric OH and H2SO4. The corresponding methods both involve chemical ionization of H2SO4 by NO3-
ions with OH being first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the system. The chemical
ionization mass spectrometry (CIMS) system has been operated since April 1998 at the Meteorological Observatory
Hohenpeissenberg, a mountain research station of the German Weather Service in South Germany. A technical description of
the apparatus is presented followed by a detailed estimate of uncertainties in calibration and ambient air measurements
resulting from changes in instrumental and/or ambient parameters. Examples from both calibration runs and ambient air
measurements are shown. For the present system and operating conditions accuracy, precision, and detection limit are
estimated to be 39%, 30%, and 3 3 104 molecules cm23 for H2SO4, and 54%, 48%, and 5 3 105 molecules cm23 for OH
measurements, respectively, based on 5 min signal integration. (Int J Mass Spectrom 202 (2000) 91–109) © 2000 Elsevier
Science B.V.

A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE

Date added: 01/01/2000
Date modified: 07/27/2009
Filesize: 4.55 MB
Prinn, R. G., et al. (2000), A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105(D14), 17,751–17,792.

Abstract


We describe in detail the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Gases Experiment (GAGE), and the Advanced Global Atmospheric Gases Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high-frequency in situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past 20 years, and show both the evolution of latitudinal gradients and the high-frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long-lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past 60 years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are as follows: (1) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels; (2) mole fractions of total chlorine contained in long-lived halocarbons (CCl2F2, CCl3F, CH3CCl3, CCl4, CHClF2, CCl2FCClF2, CH3Cl, CH2Cl2, CHCl3, CCl2=CCl2) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere; (3) the chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism; (4) multiannual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALE/GAGE/AGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where available (CCl2F2 (CFC-12) and CCl2FCClF2 (CFC-113) show the greatest discrepancies); (5) the mole fractions of the hydrochlorofluorocarbons and hydrofluorocarbons, which are replacing the regulated halocarbons, are rising very rapidly in the atmosphere, but with the exception of the much longer manufactured CHClF2 (HCFC-22), they are not yet at levels sufficient to contribute significantly to atmospheric chlorine loading. These replacement species could in the future provide independent estimates of the global weighted-average OH concentration provided their industrial emissions are accurately documented; (6) in the future, analysis of pollution events measured using high-frequency in situ measurements of chlorofluorocarbons and their replacements may enable emission estimates at the regional level, which, together with industrial end-use data, are of sufficient accuracy to be capable of identifying regional noncompliance with the Montreal Protocol.

A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE

Date added: 01/01/2000
Date modified: 07/23/2009
Filesize: 4.55 MB
Prinn, R. G., et al. (2000), A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105(D14), 17,751–17,792.

Abstract


We describe in detail the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Gases Experiment (GAGE), and the Advanced Global Atmospheric Gases Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high-frequency in situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past 20 years, and show both the evolution of latitudinal gradients and the high-frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long-lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past 60 years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are as follows: (1) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels; (2) mole fractions of total chlorine contained in long-lived halocarbons (CCl2F2, CCl3F, CH3CCl3, CCl4, CHClF2, CCl2FCClF2, CH3Cl, CH2Cl2, CHCl3, CCl2=CCl2) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere; (3) the chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism; (4) multiannual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALE/GAGE/AGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where available (CCl2F2 (CFC-12) and CCl2FCClF2 (CFC-113) show the greatest discrepancies); (5) the mole fractions of the hydrochlorofluorocarbons and hydrofluorocarbons, which are replacing the regulated halocarbons, are rising very rapidly in the atmosphere, but with the exception of the much longer manufactured CHClF2 (HCFC-22), they are not yet at levels sufficient to contribute significantly to atmospheric chlorine loading. These replacement species could in the future provide independent estimates of the global weighted-average OH concentration provided their industrial emissions are accurately documented; (6) in the future, analysis of pollution events measured using high-frequency in situ measurements of chlorofluorocarbons and their replacements may enable emission estimates at the regional level, which, together with industrial end-use data, are of sufficient accuracy to be capable of identifying regional noncompliance with the Montreal Protocol.

On the Photochemical production of new particles in the coastal boundary layer On the Photochemical production of new particles in the coastal boundary layer

Date added: 09/11/1999
Date modified: 07/13/2009
Filesize: 420.57 kB

O’Dowd, C., et al. (1999), On the Photochemical Production of New Particles in the Coastal Boundary Layer, Geophys. Res. Lett., 26(12), 1707–1710.


Abstract


Concurrent measurements of ultra-fine (r<5 nm) particle (UFP) formation, OH and SO2 concentrations in the coastal environment are examined to further elucidate the processes leading to tidal-related homogeneous heteromolecular nucleation. During almost daily nucleation events, UFP concentration approached ≈300,000 cm−3 under conditions of solar radiation and low tide. Simultaneous measurements of OH illustrate that, as well as occurring during low tide, these events occur during conditions of peak OH concentration, suggesting that at least one of the nucleating species is photochemically produced. Derived H2SO4 production also exhibited remarkable coherence, although phase-lagged, with UFP formation, thus suggesting its involvement, although binary nucleation of H2SO4 and H2O can be ruled out as a plausible mechanism. Ternary nucleation involving NH3 seems most likely as a trigger mechanism, however, at least a fourth condensable species, X, is required for growth to detectable sizes. Since UFP are only observed during low tide events, it is thought that species X, or it’s parent, is emitted from the shore biota - without which, no nucleation is detected. Species X remains to be identified. Model simulations indicate that, in order to reproduce the observations, a nucleation rate of 107 cm−3 s−1, and a condensable vapour concentration of 5 × 107 cm−3, are required.

Observations and modelling of aerosol growth in marine stratocumulus - Case Study Observations and modelling of aerosol growth in marine stratocumulus - Case Study

Date added: 08/31/1999
Date modified: 07/03/2009
Filesize: 364.64 kB

O'Dowd, C.D., J.A. Lowe, and M.H. Smith, Observations and modelling of aerosol growth in marine stratocumulus - Case Study. Atmos. Environ, 33, 3053-3062, 1999.


Abstract


Airborne measurements of the growth of the marine accumulation mode after multiple cycles through stratocumulus cloud are presented. The nss-sulphate cloud residual mode was log-normal in spectral shape and it's mode radius was observed to progressively increase in size from 0.78 to 0.94 μm over 155 min of air parcel evolution through the cloudy marine boundary layer. The primary reason for this observed growth was thought to result from aqueous phase oxidation of SO2 to aerosol sulphate in activated cloud drops. An aqueous phase aerosol-cloud-chemistry model was used to simulate this case study of aerosol growth and was able to closely reproduce the observed growth. The model simulations illustrate that aqueous phase oxidation of SO2 in cloud droplets was able to provide enough additional sulphate mass to increase the size of activated aerosol. During a typical cloud cycle simulation, ≃ 4.6 nmoles kgair-1 (0.44 μg m-3) of sulphate mass was produced with ≃ 70% of sulphate production occurring in cloud droplets activated upon sea-salt nuclei and ≃ 30% occurring upon nss-sulphate nuclei, even though sea-salt nuclei contributed less than 15% to the activated droplet population. The high fraction of nss-sulphate mass internally mixed with sea-salt aerosol suggests that aqueous phase oxidation of SO2 in cloud droplets activated upon sea-salt nuclei is the dominant nss-sulphate formation mechanism and that sea-salt aerosol provides the primary chemical sink for SO2 in the cloudy marine boundary layer.

Seasonal variation of carbon monoxide at remote sites in Japan Seasonal variation of carbon monoxide at remote sites in Japan

Date added: 08/07/1999
Date modified: 07/23/2009
Filesize: 183.89 kB
Narita D.; Pochanart P.; Matsumoto J.; Someno K.; Tanimoto H.; Hirokawa J.; Seasonal variation of carbon monoxide at remote sites in Japan, Chemosphere: Global Science Change, Volume 1, Number 1, August 1999 , pp. 137-144(8)

Abstract


Continuous measurement of CO has been carried out at remote sites in Japan, Oki (36oN), Happo (36oN) and Benoki (27oN). Seasonal variation at each site exhibited a clear cycle with a maximum in spring and a minimum in summer. It has been revealed that the concentrations of CO at Oki are substantially higher than at Mace Head throughout a year. Comparison of trajectory-categorized data between Oki and Mace Head has been made to elucidate that the concentration at Oki is higher than Mace Head both in the clean ''background'' and in the regionally polluted air mass. The spring maximum at Oki occurs in April that is one month later than the reported data at other remote sites in the northern hemisphere.

 

 

Optical properties of the atmospheric aerosol at mace head Optical properties of the atmospheric aerosol at mace head

Date added: 08/07/1999
Date modified: 07/23/2009
Filesize: 118.21 kB

O'Reilly S.; Kleefeld C.; Jennings S.G.,Optical properties of the atmospheric aerosol at mace head  ,Journal of Aerosol Science, Volume 30, Supplement 1, September 1999 , pp. 631-632(2)


Abstract

 

The atmospheric aerosol is known to cause cooling of the earth's climate through radiative forcing. This forcing is comparable but of opposite sign to the radiative forcing due to greenhouse gases [1PCC, 1995]. However, unlike greenhouse gases, the atmospheric aerosol is not uniformly distributed about the globe. It is found to vary significantly both spatially and temporally. Therefore, an analysis of global radiative forcing due to the atmospheric aerosol requires an estimation of forcing on a regional scale. Characterisation of the optical properties of the local atmospheric aerosol forms an integral part of such an estimation. The scattering coefficient, Osp, and absorption coefficient, (Yap, of the atmospheric aerosol are basic input parameters to radiative forcing models. These parameters have been measured since 1996 and 1989, respectively, at the Global Atmospheric Watch (GAW/WMO) atmospheric research station at Mace Head (53°19'N, 9°54'W), located on the west coast of Ireland. The results of measurements from 7 th January 1997 to 12 th June ! 997 are presented. The scattering measurements were conducted with a TSI Model 3563 Integrating Nephelometer, operating at three wavelengths (450nm, 550nm and 700nm). It also had the
capability of measuring aerosol hemispheric backscatter coefficient from 90 ° to 180 °. Black carbon mass concentrations were measured using a Magee Scientific Model AE9 Aethalometer. The absorption coefficient for each wavelength was obtained by dividing black carbon mass concentrations by a constant, C; C(~=450nm)=1.5, C()~=550nm)=1.9 and C(L=700nm)=2.4 [Bodhaine, 1995], in order to compare with the aerosol scattering coefficients at these wavelengths. The scattering coefficient, Osp, for ~.=550nm ranged from 7 to 280 Mm -1 with an average and standard deviation of 76 + 49 Mm "l (geometric mean of 60 + 2 Mmt). The corresponding hemispheric backscattering coefficient, Cbsp, measurements were about an order of magnitude lower than (ysp ranging from 0.9 to 35 Mm "1 (geometric mean of 7 + 2 Mm-I). This results in a hemispheric backscattered fraction, b, of 0.12 + 0.01 (geometric mean of 0.12). The AngstrOm exponent, describes the dependence of the aerosol scattering coefficient on wavelength, )~. The red-blue Angstr6m exponent (Ll=700nm, ~2=450nm) was found to range from -1.9 to 0.15 with an average of-0.66 + 0.7 (geometric mean of-0.69). The absorption coefficient, aap, for ~.=550nm ranged from 0.12 to 22 Mm "l and averaged 1.7 Mm "1 (geometric mean of 0.9 Mm'l). This results in an extinction coefficient, (yext, averaging 77.7Mm "1 (geometric mean of 53+2Mm'l). The scattering and absorption coefficients areused to calculate the single-scattering albedo, which describes the relative contributions of scattering and absorption to the total light extinction. The calculated albedo values ranged from 0.9 to 0.998 and averaged 0.97 + 0.02 (geometric mean of 0.97), indicating a highly scattering aerosol. The single scattering albedo exhibits a logarithmic correlation (R2=0.55, significant at a 99% confidence level) with black carbon concentrations. As black carbon levels increase, the albedo values can be seen to decrease  The scattering time series obtained were found to change with impact of different types of air mass (continental, marine and polar). The influence of synoptic meteorology on the scattering coefficient at Mace Head will be quantified by combining the pattern recognition capabilities of cluster analysis with air mass back-trajectory data.

 

Optical properties of the atmospheric aerosol at mace head Optical properties of the atmospheric aerosol at mace head

Date added: 08/07/1999
Date modified: 09/11/2009
Filesize: 118.21 kB

O'Reilly S.; Kleefeld C.; Jennings S.G.,Optical properties of the atmospheric aerosol at mace head  ,Journal of Aerosol Science, Volume 30, Supplement 1, September 1999 , pp. 631-632(2)


Abstract

 

The atmospheric aerosol is known to cause cooling of the earth's climate through radiative forcing. This forcing is comparable but of opposite sign to the radiative forcing due to greenhouse gases [1PCC, 1995]. However, unlike greenhouse gases, the atmospheric aerosol is not uniformly distributed about the globe. It is found to vary significantly both spatially and temporally. Therefore, an analysis of global radiative forcing due to the atmospheric aerosol requires an estimation of forcing on a regional scale. Characterisation of the optical properties of the local atmospheric aerosol forms an integral part of such an estimation. The scattering coefficient, Osp, and absorption coefficient, (Yap, of the atmospheric aerosol are basic input parameters to radiative forcing models. These parameters have been measured since 1996 and 1989, respectively, at the Global Atmospheric Watch (GAW/WMO) atmospheric research station at Mace Head (53°19'N, 9°54'W), located on the west coast of Ireland. The results of measurements from 7 th January 1997 to 12 th June ! 997 are presented. The scattering measurements were conducted with a TSI Model 3563 Integrating Nephelometer, operating at three wavelengths (450nm, 550nm and 700nm). It also had the
capability of measuring aerosol hemispheric backscatter coefficient from 90 ° to 180 °. Black carbon mass concentrations were measured using a Magee Scientific Model AE9 Aethalometer. The absorption coefficient for each wavelength was obtained by dividing black carbon mass concentrations by a constant, C; C(~=450nm)=1.5, C()~=550nm)=1.9 and C(L=700nm)=2.4 [Bodhaine, 1995], in order to compare with the aerosol scattering coefficients at these wavelengths. The scattering coefficient, Osp, for ~.=550nm ranged from 7 to 280 Mm -1 with an average and standard deviation of 76 + 49 Mm "l (geometric mean of 60 + 2 Mmt). The corresponding hemispheric backscattering coefficient, Cbsp, measurements were about an order of magnitude lower than (ysp ranging from 0.9 to 35 Mm "1 (geometric mean of 7 + 2 Mm-I). This results in a
hemispheric backscattered fraction, b, of 0.12 + 0.01 (geometric mean of 0.12). The AngstrOm exponent, describes the dependence of the aerosol scattering coefficient on wavelength, )~. The red-blue Angstr6m exponent (Ll=700nm, ~2=450nm) was found to range from -1.9 to 0.15 with an average of-0.66 + 0.7 (geometric mean of-0.69). The absorption coefficient, aap, for ~.=550nm ranged from 0.12 to 22 Mm "l and averaged 1.7 Mm "1 (geometric mean of 0.9 Mm'l). This results in an extinction coefficient, (yext, averaging
77.7Mm "1 (geometric mean of 53+2Mm'l). The scattering and absorption coefficients areused to calculate the single-scattering albedo, which describes the relative contributions of scattering and absorption to the total light extinction. The calculated albedo values ranged from 0.9 to 0.998 and averaged 0.97 + 0.02 (geometric mean of 0.97), indicating a highly scattering aerosol. The single scattering albedo exhibits a logarithmic correlation (R2=0.55, significant at a 99% confidence level) with black carbon concentrations. As black carbon levels increase, the albedo values can be seen to decrease  The scattering time series obtained were found to change with impact of different types of air mass (continental, marine and polar). The influence of synoptic meteorology on the scattering coefficient at Mace Head will be quantified by combining the pattern recognition capabilities of cluster analysis with air mass back-trajectory data.

Measurements of aerosol scattering coefficient over a period of 2 years at Mace Head, Ireland Measurements of aerosol scattering coefficient over a period of 2 years at Mace Head, Ireland

Date added: 08/07/1999
Date modified: 08/07/2008
Filesize: 134.93 kB
Ch. Kleefeld, S. O'Reilly and S.G. Jennings ,MEASUREMENTS OF AEROSOL SCATTERING COEFFICIENT OVER A PERIOD OF 2 YEARS AT MACE HEAD, IRELAND,J. Aerosol Sci. Vol. 30, Suppl. 1, pp. S 157-S 158, 1999

Diurnal cycles of short-lived tropospheric alkenes at a north Atlantic coastal site Diurnal cycles of short-lived tropospheric alkenes at a north Atlantic coastal site

Date added: 08/07/1999
Date modified: 07/27/2009
Filesize: 210.82 kB

A.C. Lewis J.B. McQuaid, N. Carslaw, M.J. Pilling.,; Short Communication Diurnal cycles of short-lived tropospheric alkenes at a north Atlantic coastal site,. Atmospheric Environment 33 (1999) 2417Ð2422 2419


Abstract


Observation of diurnal cycles in atmospheric concentrations of reactive alkenes are reported from measurements performed at a North Atlantic coastal site (Mace Head, Eire 53°19'34N; 9°54'14W). Species seen to exhibit distinct cycles included isoprene, ethene, propene, 1-butene, iso-butene and a substituted C6 alkene. Five hundred and thirty air mass classified measurements were performed over a 4 week period at approximately hourly frequency and demonstrate that during periods when air flow resulted from unpolluted oceanic regions a clear daily cycle in concentrations existed, peaking at around solar noon for all species. These observations support the proposed mechanism of production via photochemical degradation of organic carbon in sea water. The observed concentrations showed strong correlation (propene R2 > 0.75) with solar flux, with little relationship to other meteorological or chemical parameters. The species' short atmospheric lifetimes indicate that the source of emission was from local coastal waters within close proximity of the sampling site. At solar noon concentrations of reactive alkenes from oceanic sources were responsible for up to 88% of non-methane hydrocarbon reaction with the hydroxyl radical at this coastal marine site.

 

Modelling OH, HO2, and RO2 radicals in the marine boundary layer 1. Model construction and compa Modelling OH, HO2, and RO2 radicals in the marine boundary layer 1. Model construction and compa

Date added: 08/06/1999
Date modified: 07/27/2009
Filesize: 1.29 MB

Carslaw, N., D. J. Creasey, D. E. Heard, A. C. Lewis, J. B. McQuaid, M. J. Pilling, P. S. Monks, B. J. Bandy, and S. A. Penkett (1999), Modeling OH, HO2, and RO2 radicals in the marine boundary layer 1. Model construction and comparison with field measurements, J. Geophys. Res., 104(D23), 30,241–30,255.


Abstract


An observationally constrained box model has been constructed to investigate radical chemistry at the Mace Head Atmospheric Observatory, a remote marine location on the west coast of Ireland. The primary aim of the model has been to model concentrations of the hydroxyl (OH), hydroperoxy (HO2), and the sum of peroxy Σ([HO2]+[RO2]) radicals measured by in situ instruments at this location. The model used in these studies consists of about 1670 reactions and 500 species, and model predictions of radical concentrations have been evaluated against field data. In order to further understand the chemistry, the model has been reduced using sensitivity analysis on both a clean and a semipolluted day. For reduced mechanisms that predict the concentrations of OH and HO2 to within 5% of the full mechanism, the semipolluted day can be represented using 279 species and 986 reactions, and the clean day using 249 species and 894 reactions. A further reduction has been applied whereby the reduced mechanisms predict concentrations of OH and HO2 to within 20% of the full mechanism for the daytime hours. In this way, the OH and HO2 concentrations on the semipolluted day can be represented by 42 species and 64 reactions, and the clean day by 17 species and 25 reactions. We show that these reduced mechanisms are generally applicable for this location under broadly similar conditions. Simple steady state expressions have also been derived to represent the chemistry at this location, allowing the concentrations of OH and HO2 to be deduced analytically. The expressions are based on the reduced mechanisms and on a further analysis of the reaction rates. Finally, an uncertainty analysis has been carried out to quantify the effects of propagation of uncertainties in the rate parameters and constrained concentrations through to the calculated radical concentrations in the model. For model concentrations of OH, HO2, and Σ([HO2]+[RO2]) radicals, the 2σ uncertainties are 31, 21, and 25%, respectively for clean air, and 42, 25, and 27% for semipolluted air.
«StartPrev12345678910NextEnd»
Page 7 of 11
Copyright © 2017 Atmospheric Physics Research Cluster. All Rights Reserved.
Joomla! is Free Software released under the GNU/GPL License.
 
None